Development of the Lilium Jet

Bhavesh Mandalia, Chief Airworthiness Officer and Deputy CTO
30 October 2023
German-based aerospace company founded in 2015 and listed on Nasdaq in 2021

Global leader in electric jet aviation with unique aircraft design and proprietary technologies

~800 employees, including 450+ engineers with deep aerospace experience

Co-located and fully integrated design, prototyping, testing, and production capabilities

Most advanced electric jet aircraft program in regulatory approval process, with expected market entry in 2025

Source: Company information
The Lilium Jet

Source: Architectural performance assessment of an eVTOL aircraft. Lilium engineering assessment. Management estimates. 1 Performance targets based on current development status of aircraft. Cruise speed based on Lilium engineering assessment assuming flight at 10,000 ft. Range refers to physical range (service range + reserves). 2 Lilium’s primary certification authority stipulates probability of a catastrophic failure must not exceed 10⁻⁹.
Ultimate cabin experience

Versatile design can open up multiple business segments

Source: Company information.
Tier 1 suppliers

Honeywell
Avionics and flight control computer

ACITURRI
Aerostructures

Expliseat
Seats

DIEHL
Interior, interior lights and floor

AERONAMIC
Engine rotor blades and engine shaft

AERinnova
Aerostructures

Collins Aerospace
Inceptor system

L3HARRIS™
Data recorder

MAGROUP
Landing gear, wheels and struts

AERONAMICS
Energy management system

CUSTOMCELLS*
Cells for batteries

Honeywell DENSO
E-motors for the engine

Electrical Wiring Interconnection System

SKF
Electric motor bearings

Source: Company information, management estimates.
Key aircraft enablers

Source: Lilium management estimates. Note: Core technologies for the Lilium Jet, such as electric ducted jet engines, proprietary battery systems, and architecture and flight controls, remain in development.
PROPULSION

Ducted Electric Vectored Thrust: (DEVT)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low noise</td>
<td>and vibration</td>
</tr>
<tr>
<td>Safer and</td>
<td>more redundant</td>
</tr>
<tr>
<td>Designed for</td>
<td>scalability</td>
</tr>
</tbody>
</table>

Source: Lilium management estimates. Note: Core technologies for the Lilium Jet, such as electric ducted jet engines, proprietary battery systems, and architecture and flight controls, remain in development.
Windtunnel testing

Test Location: Switzerland
Test Article: Full-Scale Canard
Test: 60° Angle Sweep
Test Speed Up 4000%

Source: Company Information.
Flight testing
Energy Storage System Overview

10 battery packs per aircraft
- >3MW peak power
- ~300kWH
- Pack configuration supports voltages >900V

Design to satisfy latest regulatory requirements from EASA
- Thermal runaway containment
- Crash worthiness

Maintability & Upgradability
- Pack replacement strategy

System redundancy on AC level
- Integrated Battery Management and HV Power Distribution Functions

Source: Company information & Engineering estimates.
Projected operational flight profile
based on max take-off weight
Certification program progress

<table>
<thead>
<tr>
<th>Step</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft technical familiarization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certification basis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release all Certification Plans and all Means of Compliance to authority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agreement on Certification Program (incl. Means of Compliance)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance Demonstration & Reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type Certification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How does the Lilium Jet architecture work?

- EASA
- FAA
- ANAC

Which requirements will apply for the Lilium jet?

- EASA: CRI A-01
- FAA: G-1 Issue Paper
- ANAC: G-1 Issue Paper

Which means and methods to demonstrate compliance?

- EASA: CRI A-01
- FAA: G-2 Issue Paper
- ANAC: G-2 Issue Paper

Agreement on how will we demonstrate compliance and authority Level of Involvement

- EASA: Complete
- FAA: In discussion with relevant authority
- ANAC: Not started

Collection of methods and evidences to demonstrate compliance

- EASA: Complete
- FAA: Not started
- ANAC: Not started

Verification of compliance

- EASA: Complete
- FAA: In discussion with relevant authority
- ANAC: Not started

Notes
- Additional tests & reports to account for Significant Standard Differences between EASA and FAA Certification Basis
- Additional tests & reports to account for Significant Standard Differences between EASA and ANAC Certification Basis

P. 13
Following a classic aerospace program

Developed 4 generations of test aircraft

Test campaign with 5th gen. test aircraft

Historic transition flight

Agreements for +600 aircraft

Sign binding agreements with deposits

Start assembly of type conforming aircraft

Receive Design Organization Approval

Agree full certification plan and MoCs with EASA

First manned flight with type conforming aircraft

Ramp-up battery production line

Operational approval for Entry into Service

Build-up aircraft series production line

Ramp-up Series Production

Statements with respect to future value drivers are forward-looking, subject to significant business, economic, regulatory & competitive uncertainties & contingencies, many of which are beyond the control of the Company & its management & based upon assumptions with respect to future decisions and events, which are subject to change. Actual results will vary & those variations may be material. Nothing in this presentation should be regarded as a representation by any person that the value drivers will occur as described herein.
Follow our progress

LILIUM.COM